Impact of the mixing boundary layer on the relationship between PM2.5 and aerosol optical thickness

نویسندگان

  • Neda Boyouk
  • Jean-François Léon
  • Hervé Delbarre
  • T. Podvin
  • C. Deroo
چکیده

The purpose of this paper is to study the relationship between columnar aerosol optical thickness and ground-level aerosol mass. A set of Sun photometer, elastic backscattering lidar and TEOM measurements were acquired during April 2007 in Lille, France. The PM2.5 in the mixed boundary layer is estimated using the lidar signal, aerosol optical thickness, or columnar integrated Sun photometer size distribution and compared to the ground-level station measurements. The lidar signal recorded in the lowest level (240 m) is well correlated to the PM2.5 (R1⁄4 0.84). We also show that the correlation between AOT-derived and measured PM2.5 is significantly improved when considering the mixed boundary layer height derived from the lidar. The use of the Sun photometer aerosol fine fraction volume does not improve the correlation. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol optical thickness and PM 2 . 5 1 Intercomparison between Satellite - Derived Aerosol Optical Thickness and PM

We explore the relationship between column aerosol optical thickness (AOT) derived from the Moderate Resolution Imaging SpectroRadiometer (MODIS) on the Terra/Aqua satellites and hourly fine particulate mass (PM2.5) measured at the surface at seven locations in Jefferson county, Alabama for 2002. Although the MODIS AOT is a column value and the PM2.5 mass is representative of near-surface condi...

متن کامل

Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies

[1] We explore the relationship between column aerosol optical thickness (AOT) derived from the Moderate Resolution Imaging SpectroRadiometer (MODIS) on the Terra/Aqua satellites and hourly fine particulate mass (PM2.5) measured at the surface at seven locations in Jefferson county, Alabama for 2002. Results indicate that there is a good correlation between the satellite-derived AOT and PM2.5 (...

متن کامل

Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach

[1] Monitoring particulate matter air quality from spaceborne measurements is largely confined to relating columnar satellite retrievals of aerosol optical thickness (AOT) with ground measurements of PM2.5 mass concentration. However, vertical distribution of aerosols and meteorological effects such as wind speed, temperature, and humidity also play a major role in this AOT-PM2.5 relationship. ...

متن کامل

Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China

Beijing, the capital of China, is a densely populated city with poor air quality. The impact of high pollutant concentrations, in particular of aerosol particles, on human health is of major concern. The present study uses aerosol optical depth (AOD) as proxy to estimate long-term PM2.5 and subsequently estimates the premature mortality due to PM2.5. We use the AOD from 2001 to 2012 from the Ae...

متن کامل

Factors that influence surface PM2.5 values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ

During the NASA DISCOVER-AQ campaign over the US Baltimore, MD–Washington, D.C., metropolitan area in July 2011, the NASA P-3B aircraft performed extensive profiling of aerosol optical, chemical, and microphysical properties. These in situ profiles were coincident with ground-based remote sensing (AERONET) and in situ (PM2.5) measurements. Here, we use this data set to study the correlation bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009